
2026/02/10 13:52 1/2 Programación orientada a objetos en swift

Knoppia - https://www.knoppia.net/

Programación orientada a objetos en swift

Clases

 class forma{
 var lados = Int?//Atributo. Indicamos que el valor es opcional, si no se
asigna valor será nil (Equivalente a NULL en este lenguaje)
 init(lados: Int){//Constructor de la clase
 self.lados = lados//El this es Self en Swift
 }
 func descSimple()->String{//metodo
 return "una forma con \(lados)"
 }
 }
 var formilla = forma()//instanciamos un objeto de la clase forma
 formilla.lados = 7 //Le asignamos un valor al atributo lados
 print(formilla.descSimple())

En caso de querer limpiar memoria tras borrar una clase podemos utiliza deinit

Herencia

Para indicar herencia simplemente ponemos dos puntos y la clase de la que se hereda. Se pueden
sobreescribir funciones añadiendo un “override” antes del func. Se puede llamar al constructor del
padre con “super.init(Atributo:Valor)”:

Class Poliedro: forma{

 var nuevoAtributo: Int
 init(lados:Int, nuevoAtributo:Int){
 super.init(lados:lados)//llamamos al constructor del padre
 self.nuevoAtributo = nuevoAtributo
 }
 override func descSimple(){
 print("Hola, soy una función heredada reescrita")
 }
}

Precondiciones y postcondiciones

Sirven para asignar aciones que se deben hacer antes y después de una tarea.

Last
update:
2023/10/18
16:20

swift:programacionorientadaobjetos https://www.knoppia.net/doku.php?id=swift:programacionorientadaobjetos&rev=1697646043

https://www.knoppia.net/ Printed on 2026/02/10 13:52

Enumeraciones y Estructuras

Ambas cosas son prácticamente los mismo, sirven para pasar datos por valor o por referencia. Los
Struct se pasan por valor y los enum por referencia. Suele tener que ver con el rendimiento, cuando
algo se usa muy a menudo suele ser una clase, pero cuando es algo más temporal se usan structs y
enums.

struct cartas{
 var rank: Rank
 var suti: Suit
 func simpleDescription()->String{
 return "the \(rank.simpleDescription()) of \(suit.simpleDescription())"
 }
}

enum suit{
 case spades, hearts, diamonds clubs//Equivaldrían a caso 0,1,2 y 3.
 func simpleDescription()->String{
 switch self{
 case .spades
 return "spades"
 case .hearts
 return "hearts"
 case .diamonds
 return "diamonds"
 case .clubs
 return "clubs"
 default:
 return String(self.rawValue)
 }
 }
}

From:
https://www.knoppia.net/ - Knoppia

Permanent link:
https://www.knoppia.net/doku.php?id=swift:programacionorientadaobjetos&rev=1697646043

Last update: 2023/10/18 16:20

https://www.knoppia.net/
https://www.knoppia.net/doku.php?id=swift:programacionorientadaobjetos&rev=1697646043

	Programación orientada a objetos en swift
	Clases
	Herencia
	Precondiciones y postcondiciones
	Enumeraciones y Estructuras

