
2026/02/09 12:54 1/6 Resumen parcial 1 DAD

Knoppia - https://www.knoppia.net/

Resumen parcial 1 DAD

Hilos

Un hilo es una secuencia única de control de flujo dentro de un programa

Es la unidad de código más pequeña que se puede ejecutar
Pensado para realizar tareas lentas.

Cuando se implementa un hilo primero debe heredar la clase Thread y luego dentro implementar el
run(), que es donde irá la funcionalidad de este. Para ejecutar un hilo se debe poner el nombre del
objeto de la clase hilo seguido por .start()

Sistemas Distribuidos

Un sistema distribuido es un conjunto de computadores independientes interconectados a
través de una red y que son capaces de colaborar con el fin de realizar una tarea

Monoprocesador: única unidad central de proceso
Sistema Distribuido: conjunto de ordenadores independientes

interconectados a través de red
Colaboran para un fin

Computadores independientes: no comparten memoria ni espacio de ejecución
Computación distribuida: computación que se lleva a cabo en un sistema dsitribuido:

Servicio de Red
Aplicación de red

Formas de colaboración

Servicio de red: Servicio proporcionado por un tipo especial de programa, servidor en una red
Aplicación de red: Aplicación para usuarios finales ejecutada en ordenadores conectados a
través de la red

Ventajas

Los computadores y el acceso a la red son económicos
Compartición de recursos
Escalabilidad
Tolerancia a fallos

Desventajas

Múltiples puntos de fallo
Aspectos de seguridad

Last update: 2023/11/16 09:48 dad:resumen_parcial1 https://www.knoppia.net/doku.php?id=dad:resumen_parcial1&rev=1700128092

https://www.knoppia.net/ Printed on 2026/02/09 12:54

Formas de computación existentes

Monolítica: un único computador sin conexión y un solo usuario
Distribuida: Múltiples computadores conectados por red
Paralela: más de un procesador simultáneamente para ejecutar un programa
Cooperativa: dividir la computación entre ordenadores conectados para utilizar los ciclos de
CPU excedentes

Sockets

Un socket es un punto de conexión entre 2 procesos e identificado por una IP y un puerto

Puntos clave

Hilo: Un hilo es una secuencia única de control de flujo dentro de un programa
Sistema Distribuido: Un sistema distribuido es un conjunto de computadores
independientes interconectados a través de una red y que son capaces de colaborar
con el fin de realizar una tarea
Socket:Un socket es un punto de conexión entre 2 procesos e identificado por una IP y
un puerto

Práctica

Se suele pedir implementar un protocolo, lo que se resume en un servidor que responde a comandos
enviados desde un cliente. Generalmente para implementar esto necesitaremos 4 clases:

Elemento: El objeto con el que trabajaremos o gestionaremos
Cliente: Un cliente simple implementado por sockets
Servidor: Un servidor implementado por sockets, almacenará los diferentes elementos en una
lista declarada como static y llamará a un ServerThread.
ServerThread: Hilo al que le pasaremos el socket del servidor y donde se implementará la
principal funcionalidad de este.

A continuación se muestran implementaciones de ejemplo:

Elemento

public class Elemento {
 String nombre;
 double cantidad;
 public Elemento(String nombre, double cantidad) {
 this.nombre = nombre;

2026/02/09 12:54 3/6 Resumen parcial 1 DAD

Knoppia - https://www.knoppia.net/

 this.cantidad = cantidad;
 }
}

Cliente

public class Cliente {
 Socket socket;
 public void ejecutar() {
 try {
 socket = new Socket("localhost", 5000);
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));
 String linealeida ="";
 Scanner sc = new Scanner(System.in);
 do {
 pw.println(sc.nextLine());
 pw.flush();
 linealeida = br.readLine();
 System.out.println(linealeida);
 } while (linealeida.equals("cerrar") == false);
 sc.close();
 br.close();
 pw.close();
 } catch (IOException e) {
 System.out.println("Error en el Socket del Cliente: " + e);
 }
 }
 public static void main(String[] args) {
 (new Cliente()).ejecutar();
 }
}

Servidor

public class Server {
 ServerSocket serverSocket;
 Socket socket;
 static Hashtable<String, ArrayList<Elemento>> listaElementos = new
Hashtable<String, ArrayList<Elemento>>();
 public void ejecutar() {
 try {
 serverSocket = new ServerSocket(5000);
 while(true) {
 socket = serverSocket.accept();

Last update: 2023/11/16 09:48 dad:resumen_parcial1 https://www.knoppia.net/doku.php?id=dad:resumen_parcial1&rev=1700128092

https://www.knoppia.net/ Printed on 2026/02/09 12:54

 //implementamos ServerThread
 (new ServerThread(socket)).start();
 }
 } catch (IOException e) {
 System.out.println("Error en el socket servidor: "+e);
 }
 }
 public static void main(String[] args) {
 (new Server()).ejecutar();
 }
}

Server Thread

public class ServerThread extends Thread{
 Socket socket;
 public ServerThread(Socket socket) {
 this.socket = socket;
 }
 public void run() {
 try {
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));

 String linealeida[];
 do {
 linealeida = br.readLine().split(" ");
 switch (linealeida[0]) {
 case "ADD":
 if(linealeida.length == 3) {
 ArrayList<Elemento> listado;
 listado =
Server.listaElementos.get(linealeida[1]);
 Elemento elemento = new Elemento(linealeida[1],
Double.parseDouble(linealeida[2]));
 if (listado == null) {
 listado = new ArrayList<Elemento>();
 Server.listaElementos.put(linealeida[1],
listado);
 }
 listado.add(elemento);
 pw.println("Elemento insertado");
 pw.flush();
 }else {
 pw.println("Uso incorrecto para ADD");
 pw.flush();
 }

2026/02/09 12:54 5/6 Resumen parcial 1 DAD

Knoppia - https://www.knoppia.net/

 break;
 case "GET":
 if(linealeida.length == 2) {
 ArrayList<Elemento> listado = new
ArrayList<Elemento>();
 listado =
Server.listaElementos.get(linealeida[1]);
 if(listado == null){
 pw.println("Ese elemento no exite en la
lista");
 pw.flush();
 }else {
 double total=0;
 for(Elemento elemento : listado) {
 total += elemento.cantidad;
 }
 pw.println("Total: " + total);
 pw.flush();
 }
 }else {
 pw.println("USo incorrecto del comando GET");
 pw.flush();
 }
 break;
 case "DELETE":
 if(linealeida.length == 2) {
 ArrayList<Elemento> listado = new
ArrayList<Elemento>();
 listado =
Server.listaElementos.get(linealeida[1]);
 if(listado == null){
 pw.println("Ese elemento no existe");
 pw.flush();
 }else {
 listado.remove(listado.size()-1);
 pw.println("Elemento eliminado");
 pw.flush();
 }
 }else {
 pw.println("USo incorrecto del comando DELETE");
 pw.flush();
 }
 break;
 case "EXIT":
 pw.println("cerrar");
 pw.flush();
 break;
 default:
 pw.println("Error: Comando inexistente");
 pw.flush();
 break;

Last update: 2023/11/16 09:48 dad:resumen_parcial1 https://www.knoppia.net/doku.php?id=dad:resumen_parcial1&rev=1700128092

https://www.knoppia.net/ Printed on 2026/02/09 12:54

 }
 }while(linealeida[0].equals("EXIT")==false);
 br.close();
 pw.close();
 } catch (IOException e) {
 System.out.println("Error en el Socket ServerThread: "+ e);
 }
 }
}

From:
https://www.knoppia.net/ - Knoppia

Permanent link:
https://www.knoppia.net/doku.php?id=dad:resumen_parcial1&rev=1700128092

Last update: 2023/11/16 09:48

https://www.knoppia.net/
https://www.knoppia.net/doku.php?id=dad:resumen_parcial1&rev=1700128092

	Resumen parcial 1 DAD
	Hilos
	Sistemas Distribuidos
	Formas de colaboración
	Ventajas
	Desventajas
	Formas de computación existentes

	Sockets

	Puntos clave
	Práctica
	Elemento
	Cliente
	Servidor
	Server Thread

