
2026/02/08 21:29 1/5 Ejemplo de como podría ser el examen de Dad

Knoppia - https://www.knoppia.net/

Ejemplo de como podría ser el examen de
Dad

Probablemente se nos pida algo del estilo a la implementación de un protocolo, en el que un servidor
deberá recibir comandos de un cliente y responder en función a estos.

Elemento

Este será la clase con el que trabajaremos:

public class Elemento{
 //Atributos:
 String nombre
 double cantidad;
 double veces = 0;

 //Constructor:
 public Elemento(String nombre, double cantidad){
 this.nombre = nombre;
 this.cantidad = cantidad;
 }
}

Cliente

Este será el cliente que utilizaremos para enviar señales al serverSocket, este cliente permanecerá
activo permitiendo enviar mensajes al servidor hasta que se envíe el comando EXIT y se reciba la
señal “cerrado” del servidor.

public class Cliente{
 try{//Se debe hacer siempre try Catch cuando andamos con sockets
 socket = new Socket("localhost", 5000);//Inicializamos nuevo socket con
IP y Puerto
 //Buffers de lectura y escritura:
 BufferedReader br = new BufferedReader(new
InputStramReader(socket.getInputStream()));
 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));
 Scanner sc = new Scanner(System.in);//Para leer por teclado
 String rl = ""; //Aqui guardamos cada línea leída
 do{//repetimos contenido hasta que se reciba "Cerrado"
 pw.println(sc.nextLine());//Leemos del teclado con sc y enviamos al
servidor con pw
 pw.flush(); Limpiamos salida

Last update: 2023/11/13 11:09 dad:ejercicioprotocolos https://www.knoppia.net/doku.php?id=dad:ejercicioprotocolos&rev=1699873794

https://www.knoppia.net/ Printed on 2026/02/08 21:29

 //Recibimos línea del servidor con br, la almacenamos en rl y la
mostramos en pantalla:
 System.out.println((rl = br.readLine()))
 }while(lineaLeida.contentEquals("Cerrado")==false)//Mientras no se
reciba una señal de cierre
 }catch(IOException e){//en caso de salir excepción
 e.printStackTrace();
 }
}

public static void main(String[] args){
 (new Cliente()).ejecutar();
}

Servidor

public class Server{
 ServerSocket serverSocket;//Declaramos Socket Servidor
 Socket socket;//declaramos Socket standar
 Static Hashtable<string, ArrayList<elemento>> listaElementos = new
Hastable<String, ArrayList<elemento>>;//Lista de elementos
 public void ejecutar(){
 try{
 serverSocket = new ServerSocket(5000) //Indicamos puerto de escucha
 while(true){
 socket=serverSocket.accept();//Iniciamos escucha
 (new ServerThread(socket)).start()//Arrancamos el servidor en un
hilo;
 }
 }catch(IOException e){
 e.printStackTrace()//mostramos excepción ocurrida
 }
 }
 public static void main(String[] args){
 (new Server()).ejecutar(); //Iniciamos el hilo del servidor
 }
}

ServerThread

En el ServerThread extendemos la funcionalidad de Thread e implementamos la funcionalidad del
server Socket. En este caso lo que hará nuestro servidor es reaccionar a los comandos que se le
manden y en caso de recibir un comando inválido enviar un mensaje indicando que el comando no es
válido.

public class ServerThread extends Thread{
 Socket socket; Declaramos Socket

2026/02/08 21:29 3/5 Ejemplo de como podría ser el examen de Dad

Knoppia - https://www.knoppia.net/

 public ServerThread(Socket socket){//constructor de clase
 this.socket = socket
 }
 public void run(){//Funcionalidad Arranque del hilo servidor
 try{
 System.out.println("CONECTADO");
 BufferedReader br = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 PrintWriter pr = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));
 string[] linealeida;
 do{
 linealeida = br.readLine().split("");//separamos para pillar primero
el comando
 switch(lineaLeida[0]){
 //Comando ADD, formato: ADD nombre cantidad (add patata 1)
 case "ADD":
 if(lineaLeida.length==3){Si el comando tiene 3 elementos
(Comando, nombre, cantidad)
 ArrayList<Elemento> elementos = null;//Declaramos nueva lista
de elementos
 Elemento elemento = new Elemento(lineaLeida[1],
Double.parsedDouble(linealeida[2]));
 elementos= Server.listaElementos.get(linealeida[1]);
 if(elementos==null){//si no se encuentra el elemento
 elementos = new ArrayList<Elemento>() //creamos nueva lista
 Server.listaElementos.put(elemento.nombre, Elementos);
 }
 Elementos.add(elemento);
 pw.println("elemento añadido al nombre especificado");
 pw.flush;
 }else{
 pw.println(linealeida[0] + "El comando necesita mas
argumentos\nEstructura: ADD Nombre, Cantidad");
 pw.flush();
 }
 break;
 //Comando GET, formato: Get Nombre (Get patata)
 case "GET":
 if(linealeida.legth==2){ //Si el comando tiene GET + el Nombre
 ArrayList<Elemento> elementos = null
 elementos =
Server.listaElementos.get(lineaLeida[1]);//buscamos nombre en la lista
 if(elementos == null){//Si no se encuentra el elemento
 pw.println("0");
 pw.flush;
 }else{
 double total = 0;
 for(Elemento elemento: elementos){
 total+=elemento.cantidad;
 }

Last update: 2023/11/13 11:09 dad:ejercicioprotocolos https://www.knoppia.net/doku.php?id=dad:ejercicioprotocolos&rev=1699873794

https://www.knoppia.net/ Printed on 2026/02/08 21:29

 pw.println(total);
 pw.flush;
 }
 }else{
 pw.println(linealeida[0]+"no tiene estructura valida\nUso: GET
Nombre");
 pw.flush();
 }
 break;
 //Comando DELETE, uso: DELETE Nombre (DELETE Patata)
 case "DELETE":
 if(linealeida.lenght == 2){
 ArrayList<Elemento> Elementos = null;
 Elementos = Server.listaElementos.get(lineaLeida[1]);
 if((Elementos==null || Elementso.size()==0)){
 pw.println("no hay elementos para este nombre");
 pw.flush();
 }else{
 Elementos.remove(elementos.size()-1);
 pw.println("elemento borrado con éxito");
 pw.flush();
 }
 }else{
 pw.println(linealeida[0] + "se ha usado incorrectamente\nUso:
DELETE Patata")
 }
 break;
 //Comando de salida EXIT
 case "EXIT":
 if(lineaLeida.leght==1){
 pw.println("Cerrado");
 pw.flush();
 }else{
 pw.printl("el comando EXIT tiene demasiados elementos")
 pw.flush();
 }
 break;
 //En caso de introducir comando invalido
 default:
 pw.prinln("comando inexistente");
 pw.flush;
 break;
 }
 }while(linealleida[0].conentEquals("exit")==false)
 }catch(IOException e){
 e.printStackTrace();
 }
 }
}

2026/02/08 21:29 5/5 Ejemplo de como podría ser el examen de Dad

Knoppia - https://www.knoppia.net/

From:
https://www.knoppia.net/ - Knoppia

Permanent link:
https://www.knoppia.net/doku.php?id=dad:ejercicioprotocolos&rev=1699873794

Last update: 2023/11/13 11:09

https://www.knoppia.net/
https://www.knoppia.net/doku.php?id=dad:ejercicioprotocolos&rev=1699873794

	Ejemplo de como podría ser el examen de Dad
	Elemento
	Cliente
	Servidor
	ServerThread

