## [PAN] Cifrado Homomórfico (Resumen)

Se utiliza cuando se quieren realizar computaciones en una entidad que no es de confianza. Se realiza el uso de grupos de homomorfismos:  $\$D K(x+y) = D k(x) \{ o \}D k(y) \$$ 

- Cifrado: \$Cx=E(X)=X^e mod(n)\$; \$Cy=E(y)=y^e mod(n)\$
- Descifrado:  $X = D(Cx) = c \times d \pmod(n)$ ;  $Y = D(Cy) = c y d \pmod(n)$
- Multiplicación: \$Cx\*Cy = (x^e mod (n)) \* (y^e mod (n)) = X^e \* y^e mod (n) = (x\*y)^e mod (n) = E(x\*y)\$
- Por lo tanto  $D(C_x*C_y) = x*y$

## **Retículos**

Un retículo n-dimensional es cualquier combinación de enteros en base n \${a\_1, a\_2,..., a\_n}\$. Una base es buena si todos los vectores son cortos o es mala si son largos.

## Problemas de los retículos de grandes dimensiones

En los retículos es muy difícil calcular:

- SVP (Shortest Vector Problem): Encontrar la norma euclídea  $\lambda_1$  del vector más corto en el retículo
- $\alpha$ -Aproximate SVP: Encontrar un vector con una norma más pequeña que  $\alpha 1$  puede depender del número de dimensiones.
- SIVP (Shortest Independent Vectors Problem): \$λ\_n\$ es la longitud del n-vector más corto en profundidad.

## Por que se usa cifrado basado en Retículos

- Resistencia cuántica
- Relativamente fácil de implementar
- Permite cifrado homomorfico

From:

http://www.knoppia.net/ - Knoppia

Permanent link:

http://www.knoppia.net/doku.php?id=pan:res\_cifrado\_homomorfico&rev=1736286366

Last update: 2025/01/07 21:46

